If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+3b=108
We move all terms to the left:
b^2+3b-(108)=0
a = 1; b = 3; c = -108;
Δ = b2-4ac
Δ = 32-4·1·(-108)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-21}{2*1}=\frac{-24}{2} =-12 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+21}{2*1}=\frac{18}{2} =9 $
| -7+9r=9r | | 4(u+1)+5=6(u–1)+u | | 12d+6=-30-9d | | 6m-2=26 | | 0=102+5.39t-4.9t^2 | | F(x)=9x+7-3x | | 7x+12=45 | | 154=7(3r+4) | | 10y-72=188 | | 10+7/3y=1 | | 5/9x=325x | | p=-84+(-13) | | 3x+5+x+x-20=180 | | 5x+2=-12-2x | | 144=6p+7(8p-6) | | 2.2x=-34 | | 13u=9u+24 | | 3y+25=y+3 | | 2n+22=10 | | x+25+3x+2x+5=180 | | 5c+16.5=-13.5+10c | | 15-2u=3u | | 10x-4+3x+3=180 | | 325x=5/9 | | f/3-11=14 | | 3^3x-4(3^x+1)+27=0 | | 3(q-5=2(9+5)= | | 11=p/2 | | 4((x)-(5))=(4x)-(20) | | -11t+16=-14-16t-5 | | u+3/5=1/4 | | 3m+108=m^2 |